M.Sc. 2nd Semester Examination, 2023 Department of Mathematics, Mugberia Gangadhar Mahavidyalaya (Fluid Mechanics) Paper MTM – 201 FULL MARKS: 50 :: Time : 02 hours

(Candidates are required to give their answers in their own words as far as practicable)

1. Answer any four questions

- (a) Suppose a viscous fluid (of density 900Kg/m³ and viscosity 0.5Ns/m²) is flowing through a pipe of radius 20mm at a speed 3m/s. Calculate the Reynolds number for this flow.
- (b) Find the substantial derivative of the steady state velocity field **2** represented by the velocity vector $\vec{V} = (-3x, -3y, 6z)$.
- (c) What is Newtonian and Non-Newtonian fluids? Discuss with 2 example.
- (d) Write the assumption of the boundary layer theory. 2
- (e) What are the differences between laminar and turbulent flows? 2
- (f) The diameter of a pipe at the section 1 and 2 are 10cm and 20cm
 respectively. If the velocity of water through the pipe at section 1 is 7 m/s. determine also the velocity at section 2.

2. Answer any four questions

- (a) Draw an infinitesimally small moving element and show all the surface forces acting along the *y*-direction on the element. Finally find the net surface and body forces acting on that element.
- (b) Discuss the model of an infinitesimally small element fixed in 4 space.
- (c) Determine the equation of the rate of work done on element due to 4 body and free surface.

2×4=8

4×4=16

- (d) Describe the $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial t^2}$ using Crank-Nicolson scheme and hence write the algebraic expression in a matrix form for the case of Neumann boundary conditions.
- (e) Make the two-dimensional unsteady energy equation (without radiation and viscous dissipation terms) in non-dimensional form (in terms of Reynolds number $Re = \frac{UL}{v}$ and Prandtl number $Pr = \frac{v}{\alpha}$) with the help of characteristics time, length and velocity as L/U, L and U, respectively, with non-dimensional temperature $T = \frac{T^*}{T_0}$ where T_0 is the reference temperature and symbols have their usual meaning.
- (f) An incompressible velocity fields is given by u = a(x² y²), 4
 v = -2axy and ω= 0. Determine under what conditions it is a solution to the NavierStokes momentum equation for the case of without any body forces. Assuming that these conditions are met, determine the resulting pressure distribution.

3. Answer any two questions

- (a) Consider steady, laminar, fully developed flow between two 4+4 parallel plates separated by a distance 2H. The fluid is driven between the plates by an applied pressure gradient in the x-direction. It is assumed that conduction in the y-direction is much greater than conduction in x-direction.
 - (i) Determine the fully developed velocity distribution of the fluid as a function of the mean velocity.
 - (ii) Determine the fully developed temperature distribution as a function of the surface and mean temperatures.

8×2=16

4

4

- (b) (i) Write An incompressible velocity fields is given by u is 2+6unknown, $v = c(x^2 - 2xy + y^2), w = a - y^2$. What must the form of the velocity component u be?
 - (ii) Show Derive the energy equation for non-Newtonian, incompressible, viscous fluid flow with negligible radiation effects.
- (c) (i) Write all the equations of motion in terms of eddy 2+6 viscosities.
 - (ii) For the ocean with horizontal and vertical length scales 1000KM and 2KM, respectively and horizontal speed of order 0.15m/s, scale all the above equations written in part-(a) and reduces to approximated equations with order of accuracy 1%.
- (d) A circular cylinder is moving in a liquid at rest to infinite to aclculate the forces on the cylinder owing to the pressure of the field.

[Internal Assesment-10 marks]

M.Sc. 2nd Semester Examination, 2023 Department of Mathematics, Mugberia Gangadhar Mahavidyalaya (Numerical Analysis) Paper MTM – 202 FULL MARKS: 50 : : Time : 02 hours

(Candidates are required to give their answers in their own words as far as practicable)

1.	Ansv	wer any four questions 2×4=8	
	(a)	Write the merits and demerits of the LU-decomposition method to solve a system of linear equations.	2
	(b)	Is it possible to write any polynomial in terms of the Tchebyshev polynomial? Explain with an example.	2
	(c)	Suppose the maximum (in magnitude) eigenvalue of a matrix is known. How can you calculate the minimum (in magnitude) eigenvalue of the same matrix?	2
	(d)	What are the advantages to approximate a function using orthogonal polynomials?	2
	(e)	Let $S(x)=14T_4(x)+7T_3(x)+2T_2(x)-23T_0(x)$. Find the value of $S(1)$.	2
	(f)	Let $a, b, c \in \mathbb{R}$ be such that the quadrature rule $\int_{-1}^{1} f(x)dx = af(-1) + bf'(0) + cf'(1)$ is exact for all polynomials of degree less than or equal to 2. Then find the value of $(a + b + c)$.	2
2.	Ansv	wer any four questions 4×4=16	
	(a)	Explain a finite difference method to solve the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, t > 0, 0 < x < 1$	4
		where initial conditions $u(x,0) = f(x)$ and $\left(\frac{\partial u}{\partial t}\right)_{(x,0)} = g(x)$,	
		$0 < x < 1$ and boundary conditions $u(0,t) = \varphi(t)$ and $u(1,t) = \psi(t), t \ge 0$.	

- (b) Solve the following system of equations $x = (8x 4x^2 + y^2 + y^2)$ 4 1)/8 and $y = (2x - x^2 + 4y - y^2 + 3)/4$ starting with $(x_0, y_0) = (1.1, 2.0)$, using Seidel iteration method. Use the 3-point Gauss-Tchebyshev quadrature method to find the 4 (c) value of $\int_{-1}^{1} (\sec x + 2x^4) dx$. Let $f(x) = \begin{cases} 2x^3 - 4.5x^2 + 3x + 5, & 0 \le x \le 1 \\ -x^3 + 4.5x^2 - 6x + 8.1 \le x \le 2 \end{cases}$ 4 (d) Show that f(x) is a cubic spline. Given $\frac{dy}{dx} = x - y^2$ with x = 0, y = 1. Find y(0.2) by second and 4 (e) fourth order Runge-Kutta methods. Describe 3-point Gauss – Legendre quadrature formula. 4 (f) 3. Answer any two questions 8×2=16 What is the residual? (a) (i) 2+6(ii) Let (2,2), (-1.5,-2), (4,4.5) and (-2.5, -3) be a sample. Use least squares method to fit the line y = a + bx based on this sample and estimate the total error.
 - (b) Explain the Baristow method to find all roots of a polynomial 8 equation.
 - (c) Explain the successive overrelaxation method to solve a system of 8 linear equations.
 - (d) Describe Jacobi's method to find all eigenvalues and eigenvectors 8 of a symmetric matrix.

[Internal Assesment-10 marks]

M.Sc. 2nd Semester Examination, 2023 Department of Mathematics, Mugberia Gangadhar Mahavidyalaya (Abstract and Linear Algebra) Paper: MTM – 203 FULL MARKS: 50 :: Time : 02 hours

(Candidates are required to give their answers in their own words as far as practicable)

Unit I: Abstract Algebra (FULL MARKS: 25)

1.	Ansv	wer any two questions 2:	×2=4	
	(a)	How many sylow-2 subgroups are there for any group of order 6? explain.		2
	(b)	Determine the number of elements of order 5 in $Z_{25} \oplus Z_5$.		2
	(c)	Determine the degree of $[\mathbb{Q}(\sqrt{3} + 2\sqrt{2}):\mathbb{Q}]$.		2
	(d)	Prove that if $[F(\alpha) : F]$ is odd then $F(\alpha) = F(\alpha^2)$.		2
2.	Ansv	wer any two questions 4×	<2=8	
	(a)	Show that it is impossible to construct a regular 9-gon by ruler and compass.	d	4
	(b)	-		4
	(c)	Derive the class equation of quaternion group Q_8 .		4
	(d)	(e) State and prove Sylow's 2 nd theorem.		4

3. Answer any one question

- (a) (i) Show Let *E* be a field and *G* a finite group of 5+3 automorphisms of *E*. Then show that E/E^G is a finite Galois extension.
 - (ii) Show that the Galois group of the Galois extension $\mathbb{F}_{q^n}/\mathbb{F}_q$ is a cyclic group of order *n*.
- (b) (i) Show that any group of order 12 is isomorphic to $S = \{x, y : 4+2+2 x^4 = 1, y^3 = 1, yx = y^2x\}$.
 - (ii) Show that $\frac{4\mathbb{Z}}{12\mathbb{Z}} \cong \mathbb{Z}_3$
 - (iii) Define splitting field with example.

[Internal Assessment-05 marks]

Unit II: Linear Algebra (FULL MARKS: 25)

nswer any two questions $2 \times 2 = 4$	4
Justify the statements as true or false	2
What do you mean by a normal operator? Are all self-adjoint	2
Define Bilinear form on vector space V over a field F.	2
Give an example a complex symmetric matrices need not be normal.	2
nswer any two questions 4×2=8	6
Let <i>V</i> be the vector space of all polynomial functions <i>p</i> from R into <i>R</i> which have degree 2 or less. Define three functions on <i>V</i> given by, $f_1(p) = \int_0^1 p(x)dx$, $f_2(p) = \int_0^2 p(x)dx$, $f_3(p) =$	4
	(i) Every linear operator has an adjoint.(ii) The adjoint of a linear operator is unique.What do you mean by a normal operator? Are all self-adjointoperators normal? Justify.Define Bilinear form on vector space V over a field F.Give an example a complex symmetric matrices need not benormal. 4 ×2=8Let V be the vector space of all polynomial functions p from R into

Show that $\{f_1, f_2, f_3\}$ is a basis of V^* (dual basis). Determine a basis for V such that $\{f_1, f_2, f_3\}$ is its dual basis.

- (b) Let V be an inner product space, and let T be a linear operator on V. Then T is an orthogonal projection if and only if T has an adjoint T^* and $T^2 = T = T^*$.
- (c) Find all possible Jordan canonical forms for a linear operator T: V to V (vector space) whose characteristic polynomial is $(t 2)^3(t 5)^5$. In each case, find the minimal polynomial m(t).
- (d) Let v be a finite dimensional vector space, and define $\psi: V \to V^{**}$ 4 by $\psi(x) = \bar{x}$ then prove that ψ is an isomorphism.

3. Answer any one question

- (a) (i) State and prove Sylvester's Law of Inertia on finite **6+2** dimensional real vector space V.
 - (ii) Prove that the sum of two bilinear forms is a bilinear form.
- (b) (i) Let *T* and *U* be self-adjoint operators on an inner product 3+3+2 space *V*. Prove that *TU* is self-adjoint if and only if TU = UT.
 - (ii) Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Hence prove that T is self-adjoint.
 - (iii) If T is normal and $T^3 = T^2$, show that T is idempotent. If normality of T is dropped, does the conclusion still true?

[Internal Assesment-05 marks]

M.Sc.2nd Semester Examination, 2023 Department of Mathematics, Mugberia Gangadhar Mahavidyalaya (General Theory of Continuum Mechanics) Paper MTM – 205 FULL MARKS: 50 : : Time : 02 hours

(Candidates are required to give their answers in their own words as far as practicable)

1.	Ans	wer any four questions 2×4	=8
	(a)	Find the constitutive equation of perfect fluid.	2
	(b)	Define stress quadric.	2
	(c)	Prove that all principal strains are real.	2
	(d)	If the deformation of a body is defined by the displaced components $u_1 = k(3X_1^2 + X_2), u_2 = k(X_2^2 + X_3), u_1 = k(X_1^2)$, where $k > 0$. Compute the extension of a line element passes through the point (1, 1, 1) in the direction $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$.	[′] ₃ +
	(e)	Find the complex potential due to a source.	2
	(f)	The velocity (u, v, w) of a fluid at a point $P(x, y, z)$ is given by $\frac{-2xyz}{x^2+y^2}$, $v = \frac{yz}{x^2+y^2}$ and $w = \frac{z}{x^2+y^2}$. Find the rate at which densite the fluid at point <i>P</i> is decreasing in the flow field.	-
2.	Ans	swer any four questions 4×4	=16
	(a)	Derive the Helmholtz's equations of vorticity for perfect fluid.	4
	(b)	Prove that, in irrotational motion of an incompressible fluid maximum value of the speed occur on the boundary of the fluid	
	(c)	Prove that volumetric strain or cubical dilatation is equal to the	sum 4

of three linear strains.

(d) The stress matrix at a point $P(x_i)$ in a material is given by

$$(T_{ij}) = \begin{pmatrix} x_1 x_3 & x_3^2 & 0 \\ x_3^2 & 0 & -x_2 \\ 0 & -x_2 & 0 \end{pmatrix}$$

Find the stress vector at the point Q(1, 0, -1) on the surface $x_1 = x_2^2 + x_3^2$.

(e) State and prove Kelvin's Circulation Theorem.

(f) Show that
$$\frac{x^2}{a^2}\varphi(t) + \frac{y^2}{b^2}\frac{1}{\varphi(t)} = 1$$
 is a possible form of boundary surface of a liquid.

3. Answer any two questions

- (a) Define the rigid body deformation. Derive the Lagrangian finite 1+6+1 strain tensor (r_{ij}) and change in the angle between two line elements. Hence show that the body has undergone only rigid body deformation if $r_{ij} = 0$.
- (b) An infinite mass of fluid acted on by a force $\mu r^{-(3/2)}$ per unit mass directed to the origin. If initially the fluid is at rest and there is a cavity in the form of the sphere r = c in it, show that the cavity will be filled up after an interval of time $\sqrt{(2/5\mu)} c^{5/4}$.
- (c) The stress tensor at a point is given by 2+4+2 $(T_{ij}) = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

Determine the principal stresses and corresponding principal directions. Also check on the invariance of θ_1 , θ_2 and θ_3 .

(d) Derive the basic elastic constants for isotropic elastic solid.

[Internal Assesment-10 marks]

Page **2** of **2**

. . .

8

4

8×2=16

4

M.Sc. 2nd Semester Examination, 2023 Department of Mathematics, Mugberia Gangadhar Mahavidyalaya (General Topology) Paper MTM – 206 FULL MARKS: 25 :: Time : 01 hour

(Candidates are required to give their answers in their own words as far as practicable)

1.	Ansv	ver any two questions	2×2=4	
	(a)	Show that k-th topology is finer than the standard topology.		2
	(b)	Define quotient topology.		2
	(c)	What do you mean by topological imbedding? Illustrate with example.	an	2
	(d)	Define locally compact space with an example.		2
2.	Ansv	ver any two questions 4×2=8	i	
	(a)	Let <i>Y</i> be an ordered set in the order topology. Let $f, g: X \to Y$ continuous. Show that the set $\{x \in X f(x) \le g(x)\}$ is closed in <i>X</i> .		4
	(a) (b)			4 4
		continuous. Show that the set $\{x \in X f(x) \le g(x)\}$ is closed in X	Χ.	

3. Answer any one question

- (a) (i) Let X and Y be two topological space and $f: X \to Y$. (2+2) Then the following are equivalent. +
 - I. f is continuous.
 - II. for every closed set B of Y the set $f^{-1}(B)$ is closed in X.
 - (ii) Examine the compactness of the following sets over the (2+2) interval (0,1)

I.
$$\left\{ \left(sin^2 \left(\frac{n\pi}{100} \right), cos^2 \left(\frac{n\pi}{100} \right) \right) : n \in \mathbb{N} \right\}$$

II.
$$\left\{ \left(\frac{1}{2}e^{-\pi}, 1-\frac{1}{(n+1)^2}\right) : n \in \mathbb{N} \right\}.$$

- (b) (i) Show that a subspace of a regular space is regular. 3+5
 - (ii) Define Lindelof space. Give example to show that the product of two Lindelof space need not be Lindelof.

[Internal Assessment-05 marks]

M.Sc. 2nd Semester Examination, 2023 Department of Mathematics, Mugberia Gangadhar Mahavidyalaya (Language: C- Programming with Numerical Methods) Paper MTM – 297 FULL MARKS: 25 :: Time : 02 hours

Group A

Answer one question which is selected by lottery: $10 \times 1=10$

- 1. Write a program in C to find the key number 25 from the list of numbers {15, 47, 78, 12, 56, 78, 25, 34, 45, 98} using Linear search technique.
- 2. Write a program in C to find the key number 25 from the list of sorted numbers {12, 15, 25, 34, 45, 47, 51, 56, 87, 98} using Binary search technique.
- Write a program in C to sort the list of numbers {15, 47, 81, 12, 56, 78, 25, 34, 45, 98} using Bubble sort technique.
- Write a program in C to sort the list of numbers {15, 47, 78, 12, 56, 88, 25, 34, 45, 98} using Insertion sort technique.
- 5. Write a program in C to sort the list of numbers {15, 47, 75, 12, 56, 78, 25, 34, 45, 98} using Selection sort technique.
- 6. Write a program in C to find the number of occurrences of a letter 'a' in a given string "Student stays focused on the task at hand".
- 7. Write a program in C to check whether a given string is palindrome nature or not. Test it for the strings: "deleveled", "redder", "mathematics".
- 8. Write a program in C to rewrite the name with surname first followed by initials of first and middle name. Test it for the names: (i) Sunil Kumar Dey (ii) Manas Kumar Mondal (iii) Soma Rani Majhi (iv) Sathi Jana

- **9.** Write a program in C to display the string "The reverse is true as well" in a reverse order.
- **10.** Write a program in C to search the string "quality" in the given string (Pattern Matching) "Student completes work with quality in mind".
- Write a program in C to sort the names in alphabetic order. Test it for the names: (i) Sunil Kumar Dey (ii) Manas Kumar Mondal (iii) Soma Rani Majhi (iv) Sathi Jana (v) Rathin Samanta.
- **12.** Write a program in C to find the letter 'd' and replace by the letter 'b' in a given string "Student is a self-motivated worker".
- 13. Write a program in C to find the word "daily" and replace by the word "weekly" in a given string "Student always completes daily assignments in a timely manner".
- Write a program in C to print all combinations of letters of a word "MATH".
- 15. Write a program in C to convert the name into abbreviation form. Test it for the names: (i) Sunil Kumar Dey (ii) Manas Kumar Mondal (iii) Soma Rani Majhi (iv) Sathi Jana (v) Rathin Samanta.

Group B

Answer one question which is selected by lottery: $10 \times 1=10$

- 1. Write a program in C to evaluation of determinant by Gauss elimination method, using partial pivoting. Using this code compute the determinant of the following matrix
 - $A = \begin{bmatrix} 2 & 0 & 4 \\ 4 & 6 & 1 \\ 5 & 1 & -2 \end{bmatrix}$
- 2. Write a program in C to find matrix inverse by partial pivoting. Find the inverse of the following matrix $A = \begin{bmatrix} 2 & 4 & 5 \\ 1 & -1 & 2 \\ 3 & 4 & 5 \end{bmatrix}$
- **3.** Write a program in C to find the roots of polynomial equation.
- **4.** Write a program in C to solve the following system of equations by matrix inverse method

$$x + 2y + 3z = 10$$
, $x + 3y - 2z = 7$, $2x - y + z = 5$

- 5. Write a program in C to solve the equations by Gauss elimination method. $2x_1 + x_2 + x_3 = 4$, $x_1 - x_2 + 2x_3 = 2$, $2x_1 + 2x_2 - x_3 = 3$.
- **6.** Write a program in C to solve the following system of equations by Gauss-Seidal's iteration method, correct up to four decimal places.

27x + 6y - z = 54, 6x + 15y + 2z = 72, x + y + 54z = 110.

7. Write a program in C to solve the following tri-diagonal system of equation.

$$x_1 + x_2 = 3$$
, $-x_1 + 2x_2 + x_3 = 6$, $3x_2 + 2x_3 = 12$.

8. Write a program in C to obtain a quadratic polynomial approximation to $f(x) = e^{-x}$ using Lagrange's interpolation method, taking three points x = 0, 1/2, 1.

- 9. The following table gives pressure of a steam plant at a given temperature. Using Newton's formula, write a program in C to compute the pressure for a temperature of 142°C. Temperature °C : 140 150 160 170 180 Pressure, kgf/cm²: 3.685 4.854 6.302 8.076 10.225.
- 10. The population of a town in decennial census were as under. Write a program in C to estimate the population for the year 1955.
 Year: 1921 1931 1941 1951 1961
 Population (in crore): 46 68 83 95 105.
- 11. Write a program in C to find the value of the integration of $\int_0^1 \frac{1}{1+x^2} dx$ by Monte Carlo method for different values of N.
- 12. Use Monte Carlo method, write a program in C to find the value of $\int_{1}^{5} \frac{x}{x+\cos x} dx$, taking sample size N = 10.
- 13. Write a program in C to find the largest eigenvalue in magnitude and corresponding eigenvector of the matrix $A = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 0 & 2 \\ 3 & 4 & 5 \end{bmatrix}$ using Power method.
- 14. Using modified Euler's method, write a program in C to evaluate y(0.1)correct to two significant figures from the differential equation $\frac{dy}{dx} = y + x$, y = 1 when x = 0, taking h = 0.05.
- 15. Write a program in C to solve dy/dx = xy + y², using Runge-Kutta method of fourth order, given that y(0) = 1. Take h = 0.2 and find y at x = 0.2, 0.4, 0.6.

[Practical notebook and viva -05]